Langchain, LlamaIndex 와 같이 잘 만들어진 LLM applications 프레임워크 덕분에 주어진 데이터에 대하여 RAG(Retrieval Augmented Generation) 시스템을 구축하는 것은 굉장히 쉬워졌다. 그러나 쉬워진 구축 난이도에 비해 RAG 성능을 상용화 가능한 수준까지 끌어올리는 것은 아직도 갈 길이 멀다. 가지고 있는 데이터의 특성에 따라 적합한 RAG 기법 및 파라미터도 달라지고, 도메인의 특성에 따라 쿼리로부터 SQL을 얼마나 잘 다루는지, 테이블로 주로 구성된 데이터를 어떻게 전처리 할 것인지 등 고려해야 할 요소가 많다. 케이스별로 달라지는 경우가 많고, 여러 시행착오가 필요한 기술이기 때문에 다른 기업들의 시행착오 및 실험 시 유용했던 방법론들을 참고하는..