정보의 최신성을 반영하기 어려운 LLM 의 문제점을 해결하기 위한 방안으로 RAG 시스템이 많은 주목을 받고 있다. 그러나 기본적인 형태의 RAG 시스템은 Knowledge Intensive Reasoning Tasks 에서 한계를 보이는데, 필요한 정보가 분산되어 있거나 chunk 로 나누는 과정에서 생기는 문제(노이즈) 등의 이유로 복잡한 추론 작업에서는 성능이 떨어진다. 그래서 현재는 Naive RAG 형태에서 Advanced RAG, Modular RAG 를 거쳐 최근에는 Graph 기반의 RAG 까지 다양한 방법론이 등장하고 있다. 얼마 전에 공개된 이 논문에서 제안하는 StructRAG 방식은 이전 RAG 시스템과 다르게 추론 과정에서 추가적인 Hybrid Structure Router 를 두..